

G Fast Gene

T4 DNA Ligase

Cat.#	Size	Conc.
FG-T4	20,000 units	400 units/μl
FG-T4BP	100,000 units	400 units/µl
FG-T4HC	100,000 units	2,000 units/µl

Store at -20°C

Supplied with: 10X T4 DNA Ligase Buffer Sterile water

Description

A gene encoding bacteriophage T4 DNA Ligase is cloned and expressed in *E. coli*, and the recombinant T4 DNA Ligase is purified to homogeneity. This enzyme catalyzes the formation of a covalent bond between the 5'-phosphate and 3'-OH in nicked duplex DNA or at two DNA ends. This activity is very useful to ligate DNA fragments with either cohesive or blunt ends, that are generated by restriction enzyme digestion. T4 DNA Ligase can also ligate RNA with DNA or RNA in a double helix with low efficiency. Single strands of DNA or RNA can not be ligated with T4 DNA Ligase.

Characteristics

- Molecular weight: 55 kDa
- Reaction temperature: Room temperature - Heat inactivation: 65°C for 10 min

Applications

 Cloning of restricted DNA fragments into a plasmid
Addition of linker or adaptor DNAs to cohesive or blundended DNA

Quality control

- Purity: >99% on SDS-PAGE
- Endonuclease-free
- Exonuclease-free
- Phosphatase-free

ISO9001

[ISO9001]

Unit definition

One unit is defined as the amount of enzyme required to ligate 50% of Hind III digested λ DNA in a 20 µl reaction mixtures (50 mM Tris-HCl/pH 7.5, 10 mM MgCl2, 10 mM DTT, 1 mM ATP, 25 µg/µl BSA, 0.12 µM 5'-DNA) in 30 min at 16°C. One unit for this cohesive end ligation is equivalent to 0.015 Weiss unit (1 Weiss unit,~66 units).

Storage buffer

10 mM Tris-HCl (pH 7.4), 50 mM KCl, 1 mM DTT, 0.1 mM EDTA, 200 $\mu g/ml$ BSA, 50% glycerol

10X T4 DNA Ligase Buffer

500 mM Tris-HCl (pH 7.5), 100 mM MgCl_{2}, 100 mM DTT, 10 mM ATP

Cautions

- The concentration of insert DNA to be cloned must be at least the same or up to 3-fold higher than that of the vector used.
- T4 DNA Ligase activity is inhibited significantly by NaCl or KCl at 200 mM or a higher concentration.
- The addition of PEG 4000 (final concentration, 5%) can significantly increase ligation efficiency for blunt-end DNA.

When the ligated DNA is transformed into *E. coli* by electroporation, the ligated DNA requires purification by phenol-chloroform treatment followed by ethanol precipitation.

The DNA should be dissolved in water for high-efficiency transformation.

 High concentration of DTT (100 mM) in 10X T4 DNA Ligase Buffer causes DTT to form precipitates at low temperature.
Prior to use, dissolve it completely by warming the buffer.

Standard reaction conditions

When a restriction fragment is ligated to a vector DNA.

10X T4 DNA Ligase Buffer	2 µl
T4 DNA Ligase For sticky ends	; 1 µl
(400 units/µl) For blunt ends	2 µl
Vector DNA (50~400 ng/µl)	1 µl
Insert DNA (3X molar excess of vector DNA)	X µl
Distilled water	up to 20 µl

 \rightarrow Incubate at room temperature for 1 hr.

Genetics NIPPON Genetics EUROPE GmbH www.nippongenetics.eu www.n-genetics.com

G Fast Gene®

T4 DNA Ligase

For Research Use Only. Not for use in diagnostic procedures.

Cat.#	Size	Conc.
FG-T4	20,000 units	400 units/μl
FG-T4BP	100,000 units	400 units/µl
FG-T4HC	100,000 units	2,000 units/µl

For Research Use Only. Not for use in diagnostic procedures.

Store at -20℃

Supplied with: 10X T4 DNA Ligase Buffer Sterile water

Description

A gene encoding bacteriophage T4 DNA Ligase is cloned and expressed in *E. coli*, and the recombinant T4 DNA Ligase is purified to homogeneity. This enzyme catalyzes the formation of a covalent bond between the 5'-phosphate and 3'-OH in nicked duplex DNA or at two DNA ends. This activity is very useful to ligate DNA fragments with either cohesive or blunt ends, that are generated by restriction enzyme digestion. T4 DNA Ligase can also ligate RNA with DNA or RNA in a double helix with low efficiency. Single strands of DNA or RNA can not be ligated with T4 DNA Ligase.

Characteristics

- Molecular weight: 55 kDa
- Reaction temperature: Room temperature - Heat inactivation: 65°C for 10 min
- Heat inactivation: 65 C for 10 mi

Applications

- Cloning of restricted DNA fragments into a plasmid
- Addition of linker or adaptor DNAs to cohesive or blundended $\ensuremath{\mathsf{DNA}}$

Quality control

- Purity: >99% on SDS-PAGE
- Endonuclease-free
- Exonuclease-free
- Phosphatase-free

Unit definition

One unit is defined as the amount of enzyme required to ligate 50% of Hind III digested λ DNA in a 20 μI reaction mixtures (50 mM Tris-HCI/pH 7.5, 10 mM MgCl2, 10 mM DTT, 1 mM ATP, 25 $\mu g/\mu I$ BSA, 0.12 μM 5'-DNA) in 30 min at 16°C. One unit for this cohesive end ligation is equivalent to 0.015 Weiss unit (1 Weiss unit,~66 units).

Storage buffer

10 mM Tris-HCl (pH 7.4), 50 mM KCl, 1 mM DTT, 0.1 mM EDTA, 200 $\mu g/ml$ BSA, 50% glycerol

10X T4 DNA Ligase Buffer

500 mM Tris-HCl (pH 7.5), 100 mM MgCl_2, 100 mM DTT, 10 mM ATP $\,$

Cautions

- The concentration of insert DNA to be cloned must be at least the same or up to 3-fold higher than that of the vector used.
- T4 DNA Ligase activity is inhibited significantly by NaCl or KCl at 200 mM or a higher concentration.
- The addition of PEG 4000 (final concentration, 5%) can significantly increase ligation efficiency for blunt-end DNA.

- When the ligated DNA is transformed into *E. coli* by electroporation, the ligated DNA requires purification by phenol-chloroform treatment followed by ethanol precipitation.
- The DNA should be dissolved in water for high-efficiency transformation.
- High concentration of DTT (100 mM) in 10X T4 DNA Ligase Buffer causes DTT to form precipitates at low temperature. Prior to use, dissolve it completely by warming the buffer.

Standard reaction conditions

When a restriction fragment is ligated to a vector DNA.

10X T4 DNA Ligase Buffer		2 µl
T4 DNA Ligase	For sticky ends	1 µl
(400 units/µl)	For blunt ends	2 µl
Vector DNA (50~400 ng/µl)		1 µl
Insert DNA (3X molar excess of vector DNA)		ХµІ
Distilled water		up to 20 µl

 \rightarrow Incubate at room temperature for 1 hr.